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Bremen

Y Quadrics (Quadric Surfaces/Forms) $ sl

* Implicit form of a sphere (center at origin):

X2 4 y2 4 22 = 2
X° = x'x = r?

* Generalization: ellipsoid

2 2 9 P o \\
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/a 0 0 O\

x' 0500 x =0, withx=(xyzl),and a,b,c,d >0
0 0 ¢ O ' |
\0 0 0 —d/

* In the following: scaling factors will be omitted, but can always be introduced
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e Infinite cylinder: x*+y*=1

e Paraboloid: x>+ y*—z=0

* Hyperboloid (one sheet): x*+ y* —z° =1

* All of these can be written as a quadratic form (hence the name):

x'Qx =0, xeR* QecR"™ ,with Qbeing symmetric
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Bremen

Y Torus (not really a quadric!)
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Y Quiz on Implicit Shapes

,, Don't spoil by ;'

look-ahead!

https://www.mentl.com/ytms1 d4mvl
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Y Quadric Surfaces Quiz: Which Picture Belongs to Which Equation?
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https://www.menti.com/
ytms1d4mv]
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* Further generalization of quadrics

)+ () +C

e Super-ellipsoid:

. Super-toroid: (d (5" (g)”)")r
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Y Examples of Super-Quadrics
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XScreenSaver demo "SuperQuadrics"

(www.jwz.org/xscreensaver)
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Y Ratioquadrics

Not Relevant for Exam

e Variant of superquadrics with somewhat better properties

* ldea of superquadrics can be rewritten like this:
Fx,y,z) = 1,(5) + fo(5) + f(2) — d

fo(x)=|x|P ,peR,p>0

* Problem:

* fp(x) is not differentiable at x=0 for p <1

* Thus, we get cusps, which might be unwanted

 Besides, f,(x) is fairly expensive to evaluate

G. Zachmann
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* Simple idea: use different power functions

* E.g., the following pseudo-power function:
X

p+(1—p)x

gp(Xx) =

* With that, the ratioquadric for a "ratio-ellipsoid" is

F(x,y,z) = gp( )‘|‘gq( )"‘gr( ) —

e Result:

G. Zachmann Computergraphics 2 SS April 2025
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, , Not Relevant for Exam @;%
Y Digression: Fermat's Last Theorem and Super-Quadrics in 2D

* From Pythagoras, we know there are solutions for
S

a’+ b* = ¢ :

* There are even integer solutions, the so-called

Pythagorean Triples, e.q. {3, 4, 5}, {6, 8, 10}, and
infinitely many more

* Visualize this in the plane on a lattice:

e Radius of circle =r = ¢2

* Not every integer radius qualifies, of course

 Solutions (a,b) = lattice points on the circle

* Except (£r,0) and (O, £r) don't count, of course s ot

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 11
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Not Relevant for Exam

* Question: are there (non-trivial) integer solutions for
a'+b"=c", n>?2

* Fermat's Last Theorem:
No three positive integers a, b, ¢ can satisty the equation
a" + b" = ¢" forany integer value n > 2

* Rephrased on the lattice:
the curve x" 4+ y" = ¢" never hits any lattice points (except the trivial ones),

for all integer radii of the form ¢, where n>2.

G. Zachmann Computergraphics 2 SS April 2025 Object Representations

12



Not Relevant for Exam

Y Demo

@°e {6 Fermat's Last Theorem and Lattice Points
Wolfram CDF Player™ | Find 4> | [100% }:)

Wolfram Demonstrations P

Fermat's Last Theorem and Lattice Points

radius r « 20
order n @R =4
show lattice
show scale
draw circle === -
/ AN
y.d N
¥
\
/ \
] \
\ ]
\ /
/
\ P
N\ /
N /
\\ 1/
N 1
I — el

Fermat's last theorem can be stated in terms of lattice points. Only the four lattice points (7, 0) and (0, r) lie on the curve x" + y" = 7" for integer radii r and
integer exponents n > 2.

THINGS TO TRY
Resize Images - Slider Zoom - Automatic Animation

DETAILS

This generalizes the exponent n = 2 case Demonstration "Lattice Points on a Circle" by Stephen Wolfram.

100% »

http://demonstrations.wolfram.com/FermatslLastTheoremAndLatticePoints/

G. Zachmann Computergraphik 2 SS April 2025 Object Representations 13
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Y Implicit Surfaces

» Definition: an implicit surface is the set {x | F(x) =0, x € R*}

of some function F : R> - R
* Assumption in the following: F ¢ C! oreven F c C*
* Example: all quadrics

* Another class: algebraic surfaces

) (7

‘/ )<
aH

(Xz +y2 JrZz_akz)2_b((2_ k)2—2x2) ((z+ k)2—2y2)2 8X2 o Xy2 4 X22 4 y2 4 Z2 — 8
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W Intersection of a Ray with an Implicit Surface "

* Ray: P(t)=0+t-d

* Plugging ray into implicit function F(x) =0
yields a 1D function int: F(P(t)) =0

* Find the roots:

* If polynomial and degree < 5: solve for t analytically

e Else: ...

e Start values? ...

/t

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 16



Bremen

-

- ' .4 o
Lj 7 l:l

\ -

& e

..@ v",ﬁl ° CcG :f.

j VR %

* Example with quadrics:
|

(O +td)' Q(O + td) =0
OTQO +2t0TQd + t2d"Qd = 0

* Solve quadratic equation in t
e Cases:

1. No solution — no intersection

2. Exactly one solution (i.e., value under sgqrt = 0) — exactly one intersection point,
and ray is tangential to surface

3. Two solutions:
a) Both positive — two intersections, take smaller ¢
b) One negative — ray starts in interior of quadric, use positive t

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 17



W Which Root Finding Methods to You Know?

,, Don't spoil by ;'

look-ahead!

https://www.mentl.com/ytms1 d4mvl

G. Zachmann Computergraphik 2 SS April 2025 Object Representations

: l:l
3 =
(W Ifl
&;X 7 l:l

N -
b s
. CG
| R .

18


https://www.menti.com/ytms1d4mv1

-
¢ =
) of .:.

Y Root Finding — a Case Where Newton's Method Fails %ol

YA
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Y Simple, Sure-Fire Iterative Root Finding Methods

f(x)
* Interval bisection:

o Start with bracket [xo,x1]

* Xp = %(Xo + x1)

o Keep [xo0,x2] or [x2,X1] %0 . x

* Convergence: 1 bit per iteration

* Regula falsi ("false position"): fx)
. X1 — X0 Xo-f — x1- o

 As above, but with x, = x; — £ =

h —fo fi — 1o

* Converges always, usually faster than bisection

* If "bad case" — switch to interval bisection for one step
* Hybrid method:

* |In each iteration, do bisection and reqgula falsi

e Keep the smaller interval

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 20
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* Problem of Regula falsi: once an interval is reached where f is convex (or
concave), thereafter one of the end-points is always retained

2
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W The lllinois Method

* Ildea: try to detect cases of "end-point retention"
o Assume bracket (xo, fo; x1, f1) with f; = f(x))

* Xo iIs the "older" end-point

Xot X1fo
+—r~ (standard regula falsi)

o If sign(f;) # sign(f,) :

the new bracket is (x1, f1; X2, f2) ;

fr—xo f
calculate x3 = Xlé 21 ("unmodified step")

e Calculate x» =

* Else sign(f;) = S|gn(f2) :
use new bracket (xo, yfo; X2, f2) (i.e., xo end-point is retained) ;
calculate
Xofy — Xz(”on)

X3 = , with v = L ("Minois step"

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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@ Visualization of the lllinois method
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* Note to implementers: if the old end-point xo is retained again, i.e.,
if sign(f3) = sign(f,), then the scaling with y is applied again, i.e.,

B Xof3 — X3(”Y2fo)
Xq = >
fs — (7?1o)
* Performance: empirical testing both methods (Hybrid and Illinois) with
some functions shows that

iterati la falsi + bisecti
#iterations(regula falsi + bisection) <13 20

#iterations(illinois)

* Other values of y can lead to somewhat better convergence
* E.g. "Pegasus method" or [Ford 1995]

e But are they really faster? (on a real CPU)

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Y  Note: the Initial Bracket is Tough to Find! Sl

* The previous "sure fire" methods really only work, once you have a bracket!

* Approach: devise tests to prevent searching
for roots unnecessarily

* E.g., try co compute a bonding box

]
r
1 F(t1) > 0
F(to) > O

* G. Zachmann Computergraphics 2 SS April 2025 Object Representations 25
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U Beware of the Tough Cases

Multiple root:
Very difficult to find

NS

G. Zachmann

Computergraphik 2

Singularity:
Brackets don't
"bracket" a root

SS April 2025

Pathological case:
Huge number of roots

—

Function f(x) = sin(1/x) — infinitely many roots

Object Representations 26



U Root- Finding with N Tagaéfte™ NM&thod

* Advantage:

* One of the very few "sure-fire" methods

* An open method: does not require a bracket
* Limitations:

* Works only for polynomials

* Algorithm needs to perform calculations in complex numbers, even if all roots
are real (and all coefficients)

* Very little theory is known about its convergence behavior

* If the root it converges to is a simple root, then the convergence order is (at least) 3

* Lots of empirical evidence that the algorithm (almost) always converges
towards a root; and it does so from (almost) any starting value!

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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@J Motivation for thg%ﬁﬁg\fﬁrﬁ }cﬁr =xam

* Given: the polynomial P(x) = (x — x1)(x — x2)...(x — xp) (0)

where the x; are the, possibly complex, unknown roots

* From that, we can derive the following equations:

In|P(x)| =1In|x —x¢| +In|x = x|+ -+ 1In|x — x,
d 1 1 P’ (x)
_— — L. — —- 1
dxln‘P(X)‘ X —Xi x—x, P(x) G M
d? 1 1
~ InlP(x)| =
e P P
P (PRY @
P(x) \P(x)/)

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Not Relevant for Exam

* Let x be our current approximation of a root,
w.l.0.g. root x;

e Denote distance X — Xy = 4

* Make a "drastic" assumption:

 Assume, distance to all other roots is

X—xXi~b, 1=273,...,n1
 Then, we can write (1) & (2) like this: G = % 7 ; 1
1 n—1
H ~ 32 | b2

G. Zachmann Computergraphics 2 SS April 2025
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Not Relevant for Exam

* Plug (4) into (3) and solve for a :

e Choose sign in front of sqrt such that |a| becomes minimal

a =~

n

G -

Compute G and H from

-/(n—1)(nH — G?)

P(x) = ag + aix + apx” + ...+ apx”

P'(x) = a1 + 2apx + 3a3x* ...+ na,x"*

P"(x) = 2a, +3-2-a3x... 4+ n-(n—1)ax""

* Remark: discriminant under sqrt can become negative

— a can become complex

 New approximation of root x;is X1 = X — 4

G. Zachmann

Computergraphics 2

SS April 2025

(5)

Object Representations

r,“ ﬂ\"
o
LR

N I:l
7. CG :f.
VR ."

30



. Not Relevant for Exam &
Y The Algorithm

" VR %

LW
-

e Strong recommendation: try to use code from Numerical Recipes
* For ray-tracing: have to compute all roots!

* When first root is found, factor it out of polynomial

* Find next root of smaller polynomial, repeat Laguerre n times

choose 0-th approximation X(O]

repeat .
compute (7 — 'D/(X( ))
P(x(k)
P//(X(k))
H= G-
P(x(k))

)

compute 9 =

- G+./(n—1)(nH = G?)

let X(k+1) — X(k) — 4

until a is "small enough" or k 2 max

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 31
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U Metaballs

* Definitions:
A potential field is described by a potential field function, e.g. p(r) =
where r = r(x) = [|x — xq]| .
An isosurface = set of all points that have the same potential value.

* The sphere's surface is thus

K =1{x|p(r(x)) =1}

®* T is called threshold or isovalue

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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* More complex objects can be created by blending (superposition) of several
potential fields

* Simplest blending is (weighted) summation of the potential fields:
P(x) = aip;(x)
i=1

where p; = potential field of i-th skeleton point x;

* The set of points x; is called the skeleton,
P is the total potential, the a; determine the influence (= kind of "field's force")

* Negative g; can "carve out" material (e.g., for making holes)

* Note: the potential field is, theoretically, defined throughout the whole space

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 33
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Y Examples

Individual potential fields over 2D domain

G. Zachmann Computergraphik 2 SS

Total potential field (2D)

Potential objects shapes

April 2025

Total potential

field (2D)

Object Representations

@’
7. cc
" VR

34

HEEEEER
L

s

:.:



Bremen

Y  Generalized Metaballs

* Ingredients for definition of metaballs objects:
distance function, potential function, skeleton points, weights

* Definition: a metaballs object is defined as the isosurtace

gz{x\xeR3, P(x):ZaiP(di(X)):T}

with p = some potential function,
d; = distance function to /-th skeletal point x;

* Examples for 2 skeleton points:

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Other Functions for Radial Potential Fields (Transfer Functions)

1 —

0.6 |-

0.4 +

08 | |

pi(r) = e " ()
1-35  ,r<1ip
p() =430 -7 jb<r<b @ o
0 r>0>0
r4—2r2;|—1 r S 1 O \ 
p(r) =< (3)
0 r>1

0.2 -

G. Zachmann Computergraphik 2 SS April 2025
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 Effect of the variation of the parameter d in function (3):

606

d is fixed for the left skeleton point, d = 10 ... 2000 for the right skeleton point

* Effect of varying the isovalue t:

* Many names for this kind of modeling methodology: "metaballs", "soft
objects", "blobs", "blobby modeling", "implicit modeling", ...

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Bremen

U Deformable Models

* With implicit modeling (metaballs), it is easy to create and animate
deformable "blob-like" objects:

* Animate (move) the skeleton points

* Modify parameters ag,, d, ...

* Modity the iso-value t

Brian Wyvill Frédéric Triquet
http://pages.cpsc.ucalgary.ca/~blob/animations.html http://www2._lifl.fr/~triquet/implicit/video/
G. Zachmann Computergraphics 2 SS April 2025 Object Representations 38
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"he WyviI_I Brofghers "

"The Great Train Rubbery" — Siggraph 1986
"Soft"

G. Zachmann Computergraphik 2 SS April 2025 Object Representations 39
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U Generalization / Variants 4

* Points are the simplest kind of primitive for metaballs skeletons;
analogously, we can use lines, polygons, ellipsoids, etc.:

* Problem with higher primitives at junctions: bulges

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 40
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e Other blending functions:

Pu(x) = max{p1(x), p2(x)}

* Atree of "blending" operations — the
"BlobTree":

e Combination of CSG and metaballs

* Nodes can contain operations on pairs
of children

* Or, nodes contain a transformation of
its only child

G. Zachmann Computergraphics 2 SS April 2025
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Y The Normal on Implicit Surfaces $ ol

* The normal in a point x on the implicit surface f(x) :

of

o (X) f(x+ey, z)—f(x) Note: Nabla is just
n(x) = VF(x) = g_;(x) ~ f(X, y + ¢, Z) _ f(x) shorthand nogatlon for

%(X) f(x,y,z+¢e)— f(x) Vf(x):&f(x)

X

f(x,y +¢,2z)—f(x,y —¢,2z)
f(x,y,z4+¢)—f(x,y,z—¢)

(f(x—l—e,y,z) — f(xe,y,z))

* Warning: n(x) points to the inside of the implicit surface P!
(assuming P(inside) > P(outside) )
Usually, you want n to point to the outside, so you want n(x) = —Vf(x)

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 42
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e Gradient of metaballs functions:

n(x) = VP(x) = Z a;V pi(x)

* The only tools you need is the chain rule (Kettenregel) and the fact that

(x — x;)

Ix = x|

9,
x = x| =2

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Y Why does the gradient point in the direction of the normal?

* In other words: why is the gradient in point x perpendicular to the tangent
plane at point x on the implicit surtace?

* From math, you know: the directional gradient in an (arbitrary) direction u

IS
9, 0
%f—(XO) — &f(XO)'U
* The scalar product of two vectors is proportional to the cosine, so
9, 9,
%f(xo) — &f(xo) -|u|-cos 6

where O = angle between the gradient %f(xo) and u

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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 Now, assume |u| = 1 and consider all possible u's, i.e., all vectors starting at xo
and pointing to the unit sphere around xg

* When does 2 f(x,) attain its maximum value?
— when cos©6 =1, i.e., u points in the direction of the gradient
— the gradient aﬁf(xo) is indeed the direction of maximal change of f
X
. o D _
When is =-f(xo) =0 ?
— it cosB6= 0, i.e., when u is perpendicular to the gradient

— all these u's denote directions where f does not change locally

— this is the tangent plane to the surface at point xo

— the gradient is indeed the normal at point xo

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 45
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Y Applications of Metaballs
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(C)Y0|ch|r6 quaguchl

Digital art (Prof. Kawaguchi)
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G. Zachmann Computergraphik 2 SS April 2025

Molecule visualization

. \ Rendering fluids
- [Miller et al. 2003]
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. . . . w;
Y Application in Games: Metaballs in Spore [Chris Hecker, 2014] s

o EEEn
-

* Special challenge: all characters are
designed by the player at runtime —
no fixed building blocks, no
parameterized characters

Skin and skeleton Metaballs

7

4
‘7‘\

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 47
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* Rendering uses a variant of Marching Cubes (later)

(£—-1)* ,r<d

» Potential field function: p(r) =
0 r>d

* Some example creatures:

Guard Dragon

My First Assymetrical Creation

G. Zachmann Computergraphics 2 SS April 2025
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Y Marching Cubes: Polygonization of Implicit Surfaces

* Goal: polygonal mesh that closely "follows" the surface F(x)=0

* Idea: bracket roots by sampling space regularly

* Step 1: evaluate F(x) at all grid node points

° .-
3 LW
¥
b ot .:.

* Note that (almost) every grid node is shared by 8 grid cells (voxels) — store F(x)

G. Zachmann

A.k.a. scalar field

Computergraphics 2

TS
/l/+ ? W L o\ .

SS

April 2025
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Y
* Step 2: for all edges crossing the boundary, estimate the

intersection point x where F(x)=0

 Either use bilinear interpolation between the ®-node and
the ©-node;

* Or use root finding, it F(x) is given analytically

AT T
:> ®
* Optim.: every edge is shared by 4 voxels ' .

— store the intersection pts with each edge

G. Zachmann Computergraphics 2 SS April 2025
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e Step 3: create polygons inside each "crossing" voxel
* Voxel has 8 corners — 256 cases of ® and © corners

* There are 15 unique cases (mod rotation & sign flips):

* Vertex bit mask = index into LUT

G. Zachmann
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@J) How many Bits per Row Should the LUT for the Templates Have?

https://www.menti.com/ytms1 d4mvl

G. Zachmann Computergraphik 2 SS April 2025 Object Representations
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Y solutions to Ambiguous Cases

* There exist several ambiguous cases: example

i N .Y ——g

* Solution: note that final surface must be closed — consider neighbor cubes

Wrong!  me Good.

- o
e

\ | 7 1* e iﬂ
N o
<

®
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@ Another case

Neighbors

o e o—© 0

A template fitting Template fitting the
the sign pattern sign pattern
(need to apply front/

back mirroring)

o

< Mismatc
. 64 e
‘ |
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7. o =
L VR X

* Another solution: consider the actual values at the corners (grid nodes),
interpolate in the voxel interior (tri-linear), then choose template based on
the interpolated values at specific interior points (midpoint, face centers,
etc.)

.
LR N NN

Pu—y e SO
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Ambiguity No ambiguity
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Y Marching Tetrahedra

* A potential solution of the "ambiguity"
problem:

* Decompose the voxels into tetrahedra

e Use tetrahedra instead of cubes for
constructing the polygons

* A common decomposition is into 5 tetrahedra

o=, T Al

TR L B T e pe
i I i
fi)‘f?ﬂfa@ﬁi@@ﬁww 4
Lo AT =y

VAT i

e Marching Tetrahedra
tends to produce meshes
with lower quality
(more long/thin
triangles) Marching Cubes

Marching Tetrahedra
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Y Demo

| N ) , Applet Viewer: marchingcubes/MCApplet.class
— Transformation — Current cube
(_) Translate E 3
(®) Rotate Vertex 0 (1)
——Rendering—— ‘ \'_) Min Max
| Jade : | -100 -50 0 50 100
Vertex 1 (2) [ b
O Lambert 9. Min Max
(*) Phong -100 -50 0 50 100
Vertex 2 (4)
(*) With cube Min Max
(") Without cube -100 -50 0 50 100
—Modeling Vertex 3 (8)
Isovalue O - Min Max
[ 03 ] -100 -50 0 50 100
Case number Vertex 4 (16)
[225 ] o Min Max
-100 -50 0 50 100
[ | Hidden L
Vertex 5 (32)
() face 0,1,2,3 (J|[ Min Max
-100 -0 0 50 100
() face 4,5,6,7 \
Vertex 6 (64)
() face 1,2,5,6
c { ) > Min Max
N/
() face 0,3,4,7 -100 -50 0 50 100
() face 0,1,4,5 Vertex 7 (128)
() face 2,3,6,7 O—s Mi M
— in ax
| Addacube | -100 -50 0 50 100
Del the cube | b -
t I | Switch to complementary case ]
Reset
l J || Use ambigous cases resolution
Applet started.

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html
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Y Marching S D
[ NON ) MarchingSquare
“regions ~marching square
o ¢ -
N
® (o
N
Grid Size: () small © medium  large I x-large reset

Ambiguous cases

G. Zachmann Computergraphik 2 SS April 2025
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Y Optimizations for Marching Cubes on Implicit Surfaces

* Only use potential field functions with finite radius of influence —
evaluation of overall implicit function F can omit all skeleton points whose
distance from query point is larger than this radius

* Preprocessing: for all nodes of the 3D grid, store scalar F-values (3D array)
* Don't check every voxel, instead use octree to prevent visiting every voxel!
e See "Computational Geometry" course ...

* Works, of course, only for static metaballs skeletons (but isovalue is allowed to
changel!)

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Y Tracking / Continuation Method for Metaballs

Once a cube "on" the surface is known,
there must be a neighbor cube also "on"
the surface

Algo: find a seed cube, follow/track the
implicit surface

Maintain list of cubes still to be visited

Question: how to find seed & how to
make sure no component of the implicit
surface is missed!

Solution: from every skeleton point, walk
in x-direction until "crossing" cube is
found; add these to list of cubes still to be
visited

G. Zachmann Computergraphics 2 SS April 2025

Object Representations

61



Bremen

U Another Metaballs Demo

G. Zachmann

Geometric Data Structi

res for Com..

@ 0

Geometrische Datenstrukturen fir di..

file:///Users/zach/Documents/Lehre/CG1/demos/marchingCubesJavascript/three_js/examples.

Advanced Computer Graphics - 8S.,

metaballs javascript - Google Search

syntax

5 il =]
How do | convert a float Nu.. three.js webgl - marching cubes
Materials
Material color
Point light color

Directional light orientation

Simulation

speed I:l
numBlobs E@
resolution ‘
isolation

floor

wallx ]

wallz | ]

Rendering

Close Controls

Display 2 menu

Computergraphik 2

http://threejs.org/

SS

April 2025
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U Remark: Marching Cubes for Volume Data

* Marching cubes is the standard method for segmentation of volume data
(e.g., CT or MRT data)

* No distance field here, but densities at the voxel nodes

* Extension to continuous density field by trilinear interpolation

isosurfaces

isovalue = 65
isovalue = 127

scalar CT volume (tissue density) isosurfaces for skin and bone
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Y More Examples

| fuel concentration, colored
velocity in 3D fluid flow magnetic field in sunspots by temperature in jet engine
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U Other Issues of Marching Cubes

* MC creates a huge number of polygons

 MC's grid is not adaptive — many polygons spent for large features just to
capture a few small features

 MC can represent only features at least as large as the grid voxels

* Features, e.g. corners and edges, are not preserved
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Y

Particle Systems

ing

Polygonization of Implicit Surfaces Us

 |dea

lons

icles at random pos

 Start with set of part

F=0),

VF (attraction towards

and away from each other (repelling force)

ion of

L

* Move particles in direc

; or, render point cloud directly

* Triangulate (e.g., Delaunay)

(e.g., splatting)

66
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Instancing

e Often, a large
number of
copies of the
same object
(modulo affine
transformation)
need to be
created in a
scene

In animation,
set/
environment
dressing is a
frequent case

G. Zachmann Computergraphics 2 SS April 2025 Object Representations



Bremen

Y

b |- '\‘3
e ..
NN

| W
. cc e
" VR S

* Implementation in scenegraphs: Root
several "copies" (instances) of
the same object can be created
by simply storing their
transformations plus
a pointer to the
original geometry (exemplar)

* Modern scenegraphs ‘ ‘ ‘ Geom

usually provide this feature S

Trafos

mEOEOm

* "Complex" (transformed) shapes can often be created from simpler,
canonical shapes

* Example: non-axis-aligned ellipsoid from unit sphere
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U Raytracing Instances by Ray Transformation

* Approach: 1. transform ray into exemplar's model space; 2. compute
intersection of ray and exemplar; 3. transform intersection point (and
normal) back into world space

Instance

M- Exemplar
N LR
=
M

.d'

* The algorithm: . .
calc P(t)=M""0 + tM*d

intersect P'(t) w/ unit sphere — P, n', t

P=MP: n=M?""n;t:=?

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Y Why is it (M™")" to transform the normal back? e

https://www.mentl.com/ytms1 d4mvl

G. Zachmann Computergraphik 2 SS April 2025 Object Representations
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Y Example for Instancing

 Memory efficiency: only
with instancing can you fit
such huge scenes into
main memory

* Example:

* With instancing: 61
unique plant models,

1.1M unique triangles,
300MBytes

* With explicit copies: 4000
instanced plants in the
scene, 19.5M triangles

G. Zachmann Computergraphics 2

SS

April 2025
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U Constructive Solid Geometry (CSG)

* Central idea: construct a new object by set operations

performed on simpler, volumetric primitives —
constructive solid geometry (CSG)

e Simple primitives = "simple" shapes with volume
* E.g., sphere, box, cylinder, ...
* "Simple" shapes are shapes with

* Easy (= fast) intersection test with ray; or
e Easy minimal distance computation dist(point,shape)

* Set operations on shapes:

-7 T~ - T~ _
- ~ - ~ P ~ <
7 N 7 N - ~
7 N\ 7
/ \
/ \ \
/ \ \
I \ \
! A B , . B
\ 1 |
\ ! !
\ / /
\ / /
\ /N 7/
N s AN 4 N
~ - ~ s A
S~ - S~ -

Union Intersection Difference
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Bremen @J g
@ Examples of the Three Set Operations Applied to Sphere & Box e

Primitive

leferen ce

«

Primitive

Union

Difference

Intersection a.union(b) a.subtract(b) a.intersect(b)

https://evanw.github.io/csg.js/
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Breme

U The CSG Tree by Way of an Example

e Recursive application of the set operations
— CSG tree = one CSG object at the root

* Leaves = primitives
* Inner nodes = CSG operations

e Evaluation of CSG trees works similar to
evaluation of arithmetic
expression trees
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Y Rendering CSG Objects Using Raytracing
* Use implicit or explicit points on /v
representation of the A B Fa>0,Ff=0
primitiveS: Points on B, Points on A,
inside of A inside of B

e Determine all intersection
points of a ray with the 2
primitives

* If primitives are convex —

one interval where ray is
inside primitive

G. Zachmann Computergraphics 2 SS April 2025 Object Representations /5
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Y

* Propagate intervals up through the CSG tree
* At parent node, apply CSG operation to child intervals

* If interval is empty when reaching root = no
Intersection

* Else: choose closest interval and intersection point

closest to viewpoint
With AuB, we

< get "one" non-
contiguous
interval in case
of this ray!

* Warning:

e During CSG operations on intervals, the resulting
interval can become non-contiguous (i.e., several

intervals need to be maintained during tree traversal)! Dito in this case

with B - Al
* Also, pay attention to numerical robustness (e.g., kill very small

intervals)
G. Zachmann Computergraphics 2 SS April 2025 Object Representations /6




Bremen

* Prerequisite:

e Given a CSG object, i.e., a CSG tree

* A method to calculate minimal distance from any point in space to the CSG object
* Given the distance calculation method, the rest is straight-forward

e Calculate bbox of CSG object, sample distances on grid inside bbox

* Could even adapt resolution to highly detailed parts (using multi-grids)

G. Zachmann Computergraphics 2 SS April 2025 Object Representations

W Converting CSG's to Meshes Using Marching Cubes
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Y Algorithm for Calculating dist( g, CSG-obj )

* Given: query point g

* Traverse the CSG tree down to all leaves A (= primitives),
and calculate distance d(q, A)

* Assume:
d < O for qinside A, d =0 for q on surface of A, d > O for q outside A

° Let C=A ® B be an inner node of the CSG tree (@ is either u, n, or \ )

* Now
d(q, AU B) = min( d(q, A), d(q, B) )

o

G. Zachmann

Computergraphics 2

d(q, AN B) = max( d(q, A), d(q, B) )

d(q, A\ B) = max( d(q, A), —d(q, B) )

SS

April 2025

Object Representations
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@J Motivation

C=AUB

G. Zachmann Computergraphik 2

?

d(q, AU B) = min( d(q,A), d(q, B) |

1
T
;]
3 7
4
SS April 2025 Object Representations
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b :::
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" VR

* Warning: this definition of the distance function does NOT produce a true
distance field, i.e., for some q, it does NOT give the minimal distance
between g and the CSG object !

* With the distance, you can propagate the "closest" point up the CSG tree

* Similar warning: this is not always the true closest point on the resulting surface
of the CSG object!

e Can you make use of this closest point during the Marching Cubes algo?

* For query points (grid points) close to the final surface, the distances
reported by d() are good enough
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Y Example Application: Simulation of Milling
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U Combination of CSG and Metaballs

f/’v
S N
4 ’ -\-
/, N
.'// .\. ,
.'/ N \

e Could combine metaballs and CSG

* Approach:

* Atree of "blending" and set operations
("BlobTree")

* Leaves are individual metaballs
(isosurfaces of skeleton points/lines/

disks/...)

G. Zachmann Computergraphics 2 SS April 2025
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Y  CSGin Design (?)

G. Zachmann Computergraphik 2

iR

Ferruccio Laviani

SS April 2025

Object Representations
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Y Solution to the Quizz

G. Zachmann

Computergraphik 2

SS

April 2025

"Villarceau Circles" by Tor Olav
Kristensen (2004)

For every point on a torus, one can
draw four different circles through it
that all lie on the surface of the
torus. Two of these four circles are
called Villarceau circles. The four
narrow pairs of bands in this image
follow such Villarceau circles. All the
shapes in this image are made with
Constructive Solid Geometry
operations with tori only (except for
the ground plane of course).

Object Representations 84
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YW Procedurally Defined Fractals

* "Subtractive" recursive construction of fractals: recursively "punch out" a
part of the bigger shape, such that the remains are smaller copies of the

original object
e Ray-tracing them is trivial: just recurse "on demand" up to some predefined
depth

Subtractive - Additive

Fathauer Crystal

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 85
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Y

e "Additive" recursive construction of
the Fathauer Crystal:

e Start with a red cube

* Place five halt-sized orange cubes on its
exposed faces

e Put five smaller yellow cubes on the
faces of each of those

e Etc. ...

e Similarly, you can recursively
generate many
pleasing fractals:
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Y An Early Application of Fractals

Loren C.
Carpenter:
Vol Libre, 1980

Fractals are very well-
suited for modeling
terrain
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U Point Cloud Surfaces

* Increasingly popular geometry representation

* Lots of sources of point clouds (laser scanners, Kinect et al,, ...)
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Y Applications

CE s T
“'ﬁ-ﬁpﬁt’ﬁ;‘z T
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Y

Our Goal

e Surface definition that is ..
e Quick to evaluate
* Robust against noise

e Smooth

* The surface definition /
representation should be well
suited for:

* Ray tracing (rendering)
* Collision detection (physics)

G. Zachmann Computergraphics 2

SS

April 2025
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Y

Implicit Surface Definition

e Consider a point cloud P as noisy sampling of a smooth surface
* Consequence: reconstructed surface should not interpolate the points

* Define the surface as an implicit surface over a smooth distance function f,
determined by the point cloud P:

S = {x|f(x; P) = 0}

where f is the distance to the yet unknown surface §

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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@J) Do You Know What the PCA Does?

https://www.mentl.com/ytms1 d4mvl

G. Zachmann Computergraphik 2 SS April 2025 Object R
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Y Weighted Moving Least Squares Method (MLS) B

original (unknown)
* Define f using weighted surface

moving least squares
over k nearest neighbors

* Approximate the surface
locally by a plane through

Z; O(lx — pill)p;
Zf'(:1 O([[x — pill)
where O is an appropriate weight function based on distance from x, and k =

number of nearest neighbors of x (fixed k, or determined by a max. radius)

a(x) =

e Overall:

G. Zachmann Computergraphics 2 SS April 2025 Object Representations 94



Bremen

Y

e Choose n as
k

Jmin > (n-(pi —a(x)))“0(x — i)

* From PCA we know: n happens to be the
smallest eigenvector of the (weighted)

covariance matrix B = (b)) € R3x3 with

bij = Z OClx = pul|)(pui — ai)(puj — aj)

* For the weight function 6, use (e.g.) a Gaussian kernel
b(d)=e /", d=|x—p|

with Euclidean distance (for now), where h is called bandwidth

G. Zachmann Computergraphics 2 SS April 2025 Object Representations
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Y

* Possible weight functions (kernels), not exhaustive list:

e Gauld kernel

* The cubic polynomial

0(d) = 2(%)3 - 3(%)2 + 1

* The tricube function

o(d) = (1 l4°)

* The WendI(nd ftﬁqctlon

G. Zachmann

Computergraphics 2

1

0.8

0.6

0.4

0.2

SS
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cubic
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Y

Whatever kernel you use, it is fine to consider only "close neighbors" (NN)
around x for the computation of a(x) and n(x)

— need lots of k-NN searches in P (see "Computational Geometry")

e More important: what distance measure to use in 6(||x — p;||) ?
* Euclidean distance produces artefacts like this:

J"O
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e Solution: use a topology-based distance measure

* Try to mimic the geodesic distance on the surface

* Except without knowing the surface yet

e Use a proximity graph over point cloud

e Define
dyeo(X, P) = (1 —a)-(d(p1,p) + [Ip° — pill )
+  a-(d(p5p)+p° —p5ll)

with a=[[p’ —pj
and d(p;, p) = length of shortest path through proximity graph

» Note: don'tadd ||p° — x| (for practical reasons)
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Y Which Proximity Graph to Use

* Many kinds of proximity graphs exist

* Delaunay graph (see "Computational Geometry")

* Needs kind of a "pruning" because of "long" edges; has other problems, too

* Most other proximity graphs are subgraphs of the Delaunay graph
* Sphere-of-Influence graph (SIG): is not a subgraph of the Delaunay graph

e Definition of the SIG:

i = j — NN i
e For each point p;eP define P (pi)
lpi—pill <ritr

e Connect p; and p; by an edge ift

o Exten5|on k-SIG
ﬁ\ i kNN(P/)| Example SIG

* Define
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Y Results

Example sphere-of- Weighted MLS surfaces using different k-SIGs
influence graph (k-SIG) for the geodesic distance
--:..’,(' |
f )

Delaunay graph | i\_.ww_.,..
with pruning .{\ ;
£ A
\\\)
>

/\ -
1-SI1G
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@ Weighted MLS surface Weighted MLS surtace
with Euclidean distance with proximity graph-based distance
and fixed bandwidth in kernel ~ and automatic bandwidth estimation in kernel
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— Master's Thesis!

G. Zachmann Computergraphik 2 SS April 2025 Object Representations 101



http://cgvr.cs.uni-bremen.de/

Bremen

Y

G. Zachmann

Computergraphik 2

SS

April 2025

Object Representations

102



